Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 1.970
1.
J Med Chem ; 67(8): 6268-6291, 2024 Apr 25.
Article En | MEDLINE | ID: mdl-38619191

Overactivation of cyclic GMP-AMP synthase (cGAS) is implicated in the occurrence of many inflammatory and autoimmune diseases, and inhibition of cGAS with a specific inhibitor has been proposed as a potential therapeutic strategy. However, only a few low-potency cGAS inhibitors have been reported, and few are suitable for clinical investigation. As a continuation of our structural optimization on the reported cGAS inhibitor 6 (G140), we developed a series of spiro[carbazole-3,3'-pyrrolidine] derivatives bearing a unique 2-azaspiro[4.5]decane structural motif, among which compound 30d-S was identified with high cellular effects against cGAS. This compound showed improved plasma exposure, lower clearance, and an oral bioavailability of 35% in rats. Moreover, in the LPS-induced acute lung injury (ALI) mice model, oral administration of compound 30d-S at 30 mg/kg markedly reduced lung inflammation and alleviated histopathological changes. These results confirm that 30d-S is a new efficacious cGAS inhibitor and is worthy of further investigation.


Acute Lung Injury , Carbazoles , Drug Design , Nucleotidyltransferases , Pyrrolidines , Acute Lung Injury/drug therapy , Animals , Mice , Male , Humans , Rats , Carbazoles/chemical synthesis , Carbazoles/pharmacology , Carbazoles/chemistry , Carbazoles/therapeutic use , Carbazoles/pharmacokinetics , Pyrrolidines/pharmacology , Pyrrolidines/chemical synthesis , Pyrrolidines/chemistry , Pyrrolidines/therapeutic use , Pyrrolidines/pharmacokinetics , Nucleotidyltransferases/antagonists & inhibitors , Nucleotidyltransferases/metabolism , Lipopolysaccharides , Rats, Sprague-Dawley , Spiro Compounds/chemical synthesis , Spiro Compounds/pharmacology , Spiro Compounds/chemistry , Spiro Compounds/therapeutic use , Spiro Compounds/pharmacokinetics , Enzyme Inhibitors/chemical synthesis , Enzyme Inhibitors/pharmacology , Enzyme Inhibitors/therapeutic use , Enzyme Inhibitors/pharmacokinetics , Enzyme Inhibitors/chemistry , Structure-Activity Relationship , Molecular Docking Simulation
2.
Org Biomol Chem ; 22(17): 3459-3467, 2024 05 01.
Article En | MEDLINE | ID: mdl-38597668

A water mediated three-component reaction of isatin, 4-aminocoumarin, and 1,3-cyclodicarbonyl compounds is reported for the synthesis of spiro[chromeno[4,3-b]cyclopenta[e]pyridine-7,3'-indoline]trione and the spiro[chromeno[4,3-b]quinoline 7,3'-indoline]trione. Up to 27 different spirooxindole derivatives were synthesized by this method. The bioactivity of these spirooxindole derivatives was evaluated and they were found to show antifungal activity against Cercospora arachidicola, Physalospora piricola, Rhizoctonia cerealis, and Fusarium moniliforme.


Antifungal Agents , Benzopyrans , Indoles , Nitriles , Spiro Compounds , Water , Antifungal Agents/pharmacology , Antifungal Agents/chemical synthesis , Antifungal Agents/chemistry , Spiro Compounds/pharmacology , Spiro Compounds/chemistry , Spiro Compounds/chemical synthesis , Water/chemistry , Indoles/chemistry , Indoles/pharmacology , Indoles/chemical synthesis , Microbial Sensitivity Tests , Oxindoles/pharmacology , Oxindoles/chemical synthesis , Oxindoles/chemistry , Molecular Structure , Structure-Activity Relationship , Fusarium/drug effects
3.
Nature ; 622(7983): 507-513, 2023 Oct.
Article En | MEDLINE | ID: mdl-37730997

Marine-derived cyclic imine toxins, portimine A and portimine B, have attracted attention because of their chemical structure and notable anti-cancer therapeutic potential1-4. However, access to large quantities of these toxins is currently not feasible, and the molecular mechanism underlying their potent activity remains unknown until now. To address this, a scalable and concise synthesis of portimines is presented, which benefits from the logic used in the two-phase terpenoid synthesis5,6 along with other tactics such as exploiting ring-chain tautomerization and skeletal reorganization to minimize protecting group chemistry through self-protection. Notably, this total synthesis enabled a structural reassignment of portimine B and an in-depth functional evaluation of portimine A, revealing that it induces apoptosis selectively in human cancer cell lines with high potency and is efficacious in vivo in tumour-clearance models. Finally, practical access to the portimines and their analogues simplified the development of photoaffinity analogues, which were used in chemical proteomic experiments to identify a primary target of portimine A as the 60S ribosomal export protein NMD3.


Antineoplastic Agents , Chemistry Techniques, Synthetic , Imines , Spiro Compounds , Humans , Apoptosis/drug effects , Cell Line, Tumor , Imines/chemical synthesis , Imines/chemistry , Imines/pharmacology , Neoplasms/drug therapy , Proteomics , Ribosomes/metabolism , RNA-Binding Proteins/metabolism , Spiro Compounds/chemical synthesis , Spiro Compounds/chemistry , Spiro Compounds/pharmacology , Structure-Activity Relationship , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology
4.
Bioorg Med Chem Lett ; 74: 128925, 2022 10 15.
Article En | MEDLINE | ID: mdl-35944852

A series of 1-oxa-4-azaspiro[4,5]deca-6,9-diene-3,8-dione derivatives containing structural fragments of conjugated dienone have been synthesized previously by our group, however the Michael addition reaction between conjugated dienone and nucleophilic groups in the body may generate harmful and adverse effects. To reduce harmful side effects, the authors started with p-aminophenol to make 1-oxo-4- azaspirodecanedione derivatives, then utilized the Michael addition and cyclopropanation to eliminate α, ß unsaturated olefinic bond and lower the Michael reactivity of the compounds in vivo for optimization. At the same time, heteroatoms are put into the molecules in order to improve the hydrophilicity of the molecules and the binding sites of the molecules and the target molecules, establishing the groundwork for improved antitumor activity. The majority of the compounds had moderate to potent activity against A549 human lung cancer cells, MDA-MB-231 breast cancer cells, and Hela human cervical cancer cells. Among them, the compound 6d showed the strongest effect on A549 cell line with IC50 of 0.26 µM; the compound 8d showed the strongest cytotoxicity on MDA-MB-231 cell line with IC50 of 0.10 µM; and the compound 6b showed the strongest activity on Hela cell line with IC50 of 0.18 µM.


Antineoplastic Agents , Aza Compounds/pharmacology , Spiro Compounds/pharmacology , Antineoplastic Agents/chemistry , Aza Compounds/chemistry , Cell Line, Tumor , Cell Proliferation , Dose-Response Relationship, Drug , Drug Design , Drug Screening Assays, Antitumor , HeLa Cells , Humans , Molecular Structure , Spiro Compounds/chemical synthesis , Structure-Activity Relationship
5.
Bioorg Med Chem ; 57: 116629, 2022 03 01.
Article En | MEDLINE | ID: mdl-35091169

Malaria is a prevalent and lethal disease. The fast emergence and spread of resistance to current therapies is a major concern and the development of a novel line of therapy that could overcome, the problem of drug resistance, is imperative. Screening of a set of compounds with drug/natural product-based sub-structural motifs led to the identification of spirocyclic chroman-4-one 1 with promising antimalarial activity against the chloroquine-resistant Dd2 and chloroquine-sensitive 3D7 strains of the parasite. Extensive structure-activity and structure-property relationship studies were conducted to identify the essential features necessary for its activity and properties.


Antimalarials/pharmacology , Chromans/pharmacology , Malaria/drug therapy , Plasmodium/drug effects , Spiro Compounds/pharmacology , Antimalarials/chemical synthesis , Antimalarials/chemistry , Cell Survival/drug effects , Chromans/chemical synthesis , Chromans/chemistry , Crystallography, X-Ray , Dose-Response Relationship, Drug , Hep G2 Cells , Humans , Models, Molecular , Molecular Structure , Parasitic Sensitivity Tests , Spiro Compounds/chemical synthesis , Spiro Compounds/chemistry , Structure-Activity Relationship
6.
Eur J Med Chem ; 227: 113880, 2022 Jan 05.
Article En | MEDLINE | ID: mdl-34656041

Lysine methyltransferases are important regulators of epigenetic signaling and are emerging as a novel drug target for drug discovery. This work demonstrates the positioning of novel 1,5-oxaza spiroquinone scaffold into selective SET and MYND domain-containing proteins 2 methyltransferases inhibitors. Selectivity of the scaffold was identified by epigenetic target screening followed by SAR study for the scaffold. The optimization was performed iteratively by two-step optimization consisting of iterative synthesis and computational studies (docking, metadynamics simulations). Computational binding studies guided the important interactions of the spiro[5.5]undeca scaffold in pocket 1 and Lysine channel and suggested extension of tail length for the improvement of potency (IC50: up to 399 nM). The effective performance of cell proliferation assay for chosen compounds (IC50: up to 11.9 nM) led to further evaluation in xenograft assay. The potent compound 24 demonstrated desirable in vivo efficacy with growth inhibition rate of 77.7% (4 fold decrease of tumor weight and 3 fold decrease of tumor volume). Moreover, mirosomal assay and pharmacokinetic profile suggested further developability of this scaffold through the identification of major metabolites (dealkylation at silyl group, reversible hydration product, the absence of toxic quinone fragments) and enough exposure of the testing compound 24 in plasma. Such spiro[5.5]undeca framework or ring system was neither been reported nor suggested as a modulator of methyltransferases. The chemo-centric target positioning and structural novelty can lead to potential pharmacological benefit.


Aza Compounds/pharmacology , Enzyme Inhibitors/pharmacology , Epigenesis, Genetic/drug effects , Histone-Lysine N-Methyltransferase/antagonists & inhibitors , Quinones/pharmacology , Spiro Compounds/pharmacology , Animals , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Aza Compounds/chemical synthesis , Aza Compounds/chemistry , Cell Survival/drug effects , Crystallography, X-Ray , Dose-Response Relationship, Drug , Drug Screening Assays, Antitumor , Enzyme Inhibitors/chemical synthesis , Enzyme Inhibitors/chemistry , Epigenesis, Genetic/genetics , Female , HEK293 Cells , Histone-Lysine N-Methyltransferase/genetics , Histone-Lysine N-Methyltransferase/metabolism , Humans , Male , Mammary Neoplasms, Experimental/drug therapy , Mammary Neoplasms, Experimental/metabolism , Mammary Neoplasms, Experimental/pathology , Mice , Mice, Inbred BALB C , Mice, Inbred ICR , Mice, Nude , Microsomes, Liver/chemistry , Microsomes, Liver/metabolism , Molecular Docking Simulation , Molecular Structure , Quinones/chemical synthesis , Quinones/chemistry , Spiro Compounds/chemical synthesis , Spiro Compounds/chemistry , Structure-Activity Relationship
7.
Bioorg Med Chem ; 52: 116512, 2021 12 15.
Article En | MEDLINE | ID: mdl-34801827

Histone acetylation is one of the most essential parts of epigenetic modification, mediating a variety of complex biological functions. In these procedure, p300/CBP could catalyze the acetylation of lysine 27 on histone 3 (H3K27ac), and had been reported to mediate tumorigenesis and development in a variety of tumors by enhancing chromatin transcription activity. Ovarian cancer, as an extremely malignant tumor, has also been observed to undergo abnormal acetylation of histones. However, whether the treatment of ovarian cancer could be achieved by inhibiting the acetylation activity of p300/CBP on H3K27 has not been well investigated. In this article, we modified the structure of p300/CBP HAT domain inhibitor A-485 and obtained a highly active small molecule known as 13f, which has an IC50 value of 0.49 nM for inhibiting the in vitro enzyme activity of p300, as well as the anti-proliferation IC50 value on ovarian cancer cell line OVCAR-3 was 153 nM. In addition, 13f had strong acetylase family selectivity, good metabolic stability and promising in vivo anti-tumor activity in OVCAR-3 xenograft model. The discovery of 13f revealed a more active chemical entity of the HATs domain of p300/CBP and provided a novel idea for the application of epigenetic inhibitors in the treatment of ovarian cancer.


Antineoplastic Agents/pharmacology , Drug Design , Enzyme Inhibitors/pharmacology , Ovarian Neoplasms/drug therapy , Oxazoles/pharmacology , Spiro Compounds/pharmacology , p300-CBP Transcription Factors/antagonists & inhibitors , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Cell Line, Tumor , Cell Proliferation/drug effects , Dose-Response Relationship, Drug , Drug Screening Assays, Antitumor , Enzyme Inhibitors/chemical synthesis , Enzyme Inhibitors/chemistry , Female , Humans , Molecular Structure , Ovarian Neoplasms/metabolism , Ovarian Neoplasms/pathology , Oxazoles/chemical synthesis , Oxazoles/chemistry , Spiro Compounds/chemical synthesis , Spiro Compounds/chemistry , Structure-Activity Relationship , p300-CBP Transcription Factors/metabolism
8.
Bioorg Chem ; 117: 105427, 2021 12.
Article En | MEDLINE | ID: mdl-34794098

Despite the achieved progress in developing efficient MDM2-p53 protein-protein interaction inhibitors (MDM2 inhibitors), the acquired resistance of tumor cells to such p53 activators posed an argument about the druggability of the pathway. Combination studies disclosed that concomitant inhibition of MDM2 and BCL2 functions can sensitize the tumor cells and synergistically induce apoptosis. Herein, we employed a rapid combinatorial approach to generate a novel series of hybrid spirooxindole-based MDM2 inhibitors (5a-s) endowed with BCL2 signaling attenuation. The adducts were designed to mimic the thematic features of the chemically stable potent spiro[3H-indole-3,2'-pyrrolidin]-2(1H)-ones MDM2 inhibitors while installing a pyrrole ring on the core via a carbonyl spacer inspired by the natural product marinopyrrole A that efficiently inhibits BCL2 family functions by various mechanisms. NCI 60 cell-line panel screening revealed their promising broad-spectrum antiproliferative activities. The NCI-selected derivatives were screened for cytotoxic activities against normal fibroblasts, MDA-MB 231, HepG-2, and Caco-2 cells via MTT assay, subjected to mechanistic apoptosis studies for assessment of p53, BCL2, p21, and caspase 3/7 status, then evaluated for potential MDM2 inhibition utilizing MST assay. The most balanced potent and safe derivatives; 5i and 5q were more active than 5-fluorouracil, exhibited low µmrange MDM2 binding (KD=1.32and 1.72 µm, respectively), induced apoptosis-dependent anticancer activities up to 50%, activated p53 by 47-63%, downregulated the BCL2 gene to 59.8%, and reduced its protein level (13.75%) in the treated cancer cells. Further downstream p53 signaling studies revealed > 2 folds p21 upregulation and > 3 folds caspase 3/7 activation. Docking simulations displayed that the active MDM2 inhibitors resided well into the p53 binding sites of MDM2, and shared key interactions with the co-crystalized inhibitor posed by the indolinone scaffold (5i, 5p, and 5q), the halogen substituents (5r), or the installed spiro ring (5s). Finally, in silico ADMET profiling predicted acceptable drug-like properties with full accordance to Lipinski's, Veber's, and Muegge's bioavailability parameters for 5i and a single violation for 5q.


Antineoplastic Agents/pharmacology , Oxindoles/pharmacology , Proto-Oncogene Proteins c-bcl-2/antagonists & inhibitors , Proto-Oncogene Proteins c-mdm2/antagonists & inhibitors , Spiro Compounds/pharmacology , Tumor Suppressor Protein p53/metabolism , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Apoptosis/drug effects , Cell Line, Tumor , Cell Proliferation/drug effects , Dose-Response Relationship, Drug , Drug Design , Humans , Molecular Structure , Oxindoles/chemical synthesis , Oxindoles/chemistry , Proto-Oncogene Proteins c-bcl-2/metabolism , Proto-Oncogene Proteins c-mdm2/metabolism , Signal Transduction/drug effects , Spiro Compounds/chemical synthesis , Spiro Compounds/chemistry , Structure-Activity Relationship
9.
Int J Mol Sci ; 22(21)2021 Nov 05.
Article En | MEDLINE | ID: mdl-34769424

A series of heterocyclic compounds containing a spiro-fused pyrrolo[3,4-a]pyrrolizine and tryptanthrin framework have been synthesized and studied as potential antitumor agents. Cytotoxicity of products was screened against human erythroleukemia (K562) and human cervical carcinoma (HeLa) cell lines. Among the screened compounds. 4a, 4b and 5a were active against human erythroleukemia (K562) cell line, while 4a and 5a were active against cervical carcinoma (HeLa) cell line. In agreement with the DNA cytometry studies, the tested compounds have achieved significant cell-cycle perturbation with higher accumulation of cells in G2/M phase and induced apoptosis. Using confocal microscopy, we found that with 4a and 5a treatment of HeLa cells, actin filaments disappeared, and granular actin was distributed diffusely in the cytoplasm in 76-91% of cells. We discovered that HeLa cells after treatment with compounds 4a and 5a significantly reduced the number of cells with filopodium-like membrane protrusions (from 63 % in control cells to 29% after treatment) and a decrease in cell motility.


Antineoplastic Agents/pharmacology , Leukemia, Erythroblastic, Acute/drug therapy , Pyrrolidines/chemical synthesis , Pyrrolidines/pharmacology , Quinazolines/pharmacology , Spiro Compounds/pharmacology , Uterine Cervical Neoplasms/drug therapy , Antineoplastic Agents/chemical synthesis , Apoptosis/drug effects , Cell Cycle/drug effects , Cell Line, Tumor , Cell Movement/drug effects , Cell Proliferation/drug effects , Drug Screening Assays, Antitumor , Female , Humans , Leukemia, Erythroblastic, Acute/metabolism , Leukemia, Erythroblastic, Acute/pathology , Quinazolines/chemical synthesis , Spiro Compounds/chemical synthesis , Uterine Cervical Neoplasms/metabolism , Uterine Cervical Neoplasms/pathology
10.
Molecules ; 26(19)2021 Oct 05.
Article En | MEDLINE | ID: mdl-34641579

Spiro compounds provide attractive targets in drug discovery due to their inherent three-dimensional structures, which enhance protein interactions, aid solubility and facilitate molecular modelling. However, synthetic methodology for the spiro-functionalisation of important classes of penicillin and cephalosporin ß-lactam antibiotics is comparatively limited. We report a novel method for the generation of spiro-cephalosporin compounds through a Michael-type addition to the dihydrothiazine ring. Coupling of a range of catechols is achieved under mildly basic conditions (K2CO3, DMF), giving the stereoselective formation of spiro-cephalosporins (d.r. 14:1 to 8:1) in moderate to good yields (28-65%).


Cephalosporins/chemical synthesis , Spiro Compounds/chemical synthesis , Catechols/chemistry , Molecular Structure , Penicillins/chemistry
11.
Photochem Photobiol Sci ; 20(10): 1357-1378, 2021 Oct.
Article En | MEDLINE | ID: mdl-34537894

Natural products and their analogue have played a key role in the drug discovery and development process. In the laboratory, the total synthesis of secondary metabolites is very useful in ascertaining the hypothetical complex structure of molecules of natural origin. Total synthesis of natural products using Norrish type I and II reactions as a crucial step has been explored in this overview. Norrish reactions are important photo-induced transformations of carbonyl compounds in organic synthetic chemistry and are connected in numerous industrially and biologically relevant procedures and the processing of carbonyl compounds in the atmosphere. The present review tries to focus on the brilliant applications of Norrish type I and II photochemical reactions as a key step in the total synthesis of natural products and highlights on natural sources, structures, and biological activities of the promising natural products for the first time elegantly.


Biological Products/chemical synthesis , Alkaloids/chemical synthesis , Alkaloids/chemistry , Anti-Bacterial Agents/chemical synthesis , Anti-Bacterial Agents/chemistry , Biological Products/chemistry , Cyclization/radiation effects , Light , Naphthalenes/chemical synthesis , Naphthalenes/chemistry , Polyketides/chemical synthesis , Polyketides/chemistry , Quantum Theory , Spiro Compounds/chemical synthesis , Spiro Compounds/chemistry , Terpenes/chemical synthesis , Terpenes/chemistry
12.
J Nat Prod ; 84(8): 2345-2351, 2021 08 27.
Article En | MEDLINE | ID: mdl-34351758

The first total synthesis of the benzannulated 5,5-spiroketal natural products paeciloketal B and 1-epi-paeciloketal B has been achieved in 10 linear steps employing a biomimetic spiroketalization. This approach also furnished the related natural product bysspectin A from the same putative biosynthetic precursor as the paeciloketals. Alternatively, bysspectin A could be accessed in only six steps using an improved route. This scalable and efficient synthesis affords insight into the biosynthesis of these natural products in nature.


Biological Products/chemical synthesis , Furans/chemical synthesis , Polyketides/chemical synthesis , Spiro Compounds/chemical synthesis , Biomimetics , Molecular Structure
13.
Chem Biodivers ; 18(9): e2100197, 2021 Sep.
Article En | MEDLINE | ID: mdl-34272925

In this study, the synthesis of new spiropyrazoles, pyrazole and hydantoin heterocycles is reported by three component reactions of parabanic acids, hydrazine derivatives, and phenacyl bromides in the presence of triphenylphosphine as a nucleophile and triethylamine as a base in good to high yields (69-91 %). Evaluation of the synthesized compounds revealed a good to excellent antioxidant activities (37.6-96.2 %) using DPPH inhibitory potency. Among these compounds, hydantoin derivatives displayed higher antioxidant activities (93.7-96.2 %) comparing with spiropyrazoles and pyrazoles. The obtained results showed that Cl and Br substituents on the phenyl ring increased antioxidant activities of the related heterocycles. The antibacterial activities of the synthesized compounds were examined against two Gram-negative (Escherichia coli and Pseudomonas aeruginosa) and two Gram-positive (Staphylococcus aureus and Bacillus subtilis) bacteria. Among the synthesized heterocycles, 2-[1,3-dimethyl-2,5-dioxo-4-(2-oxo-2-phenylethyl)imidazolidin-4-yl]hydrazine-1-carbothioamide exhibited the excellent antibacterial activity against both Gram-positive and Gram-negative bacteria.


Anti-Bacterial Agents/pharmacology , Antioxidants/pharmacology , Gram-Negative Bacteria/drug effects , Gram-Positive Bacteria/drug effects , Pyrazoles/pharmacology , Spiro Compounds/pharmacology , Anti-Bacterial Agents/chemical synthesis , Anti-Bacterial Agents/chemistry , Antioxidants/chemical synthesis , Antioxidants/chemistry , Biphenyl Compounds/antagonists & inhibitors , Microbial Sensitivity Tests , Molecular Structure , Picrates/antagonists & inhibitors , Pyrazoles/chemical synthesis , Pyrazoles/chemistry , Spiro Compounds/chemical synthesis , Spiro Compounds/chemistry
14.
Bioorg Chem ; 114: 105128, 2021 09.
Article En | MEDLINE | ID: mdl-34225163

A library of Sox-pyrrolizidines was rapidly prepared by microwave-assisted, one-pot, three-component, 1,3-dipolar cycloaddition of azomethine ylides from l-proline and isatin, with various ß-nitrostyrenes. Nitro-Sox compounds, 4b, 4d and 4e inhibit HEWL amyloid fibril formation by ThT studies with percentages of fluorescence intensity of 55.4, 42.9 and 40.3%, respectively. Further studies with MTT assay, Raman spectroscopy, TEM and molecular docking supported these promising candidates for activity against amyloid misfolding, a phenomenon leading to Alzheimer's disease pathology.


Alzheimer Disease/drug therapy , Amyloid/antagonists & inhibitors , Neuroprotective Agents/pharmacology , Oxindoles/pharmacology , Pyrrolidines/pharmacology , Spiro Compounds/pharmacology , Alzheimer Disease/metabolism , Amyloid/metabolism , Dose-Response Relationship, Drug , Humans , Microwaves , Molecular Structure , Neuroprotective Agents/chemical synthesis , Neuroprotective Agents/chemistry , Oxindoles/chemical synthesis , Oxindoles/chemistry , Pyrrolidines/chemical synthesis , Pyrrolidines/chemistry , Spiro Compounds/chemical synthesis , Spiro Compounds/chemistry , Structure-Activity Relationship
15.
J Med Chem ; 64(15): 11014-11044, 2021 08 12.
Article En | MEDLINE | ID: mdl-34328319

The therapeutic potential of monoacylglycerol lipase (MAGL) inhibitors in central nervous system-related diseases has attracted attention worldwide. However, the availability of reversible-type inhibitor is still limited to clarify the pharmacological effect. Herein, we report the discovery of novel spiro chemical series as potent and reversible MAGL inhibitors with a different binding mode to MAGL using Arg57 and His121. Starting from hit compound 1 and its co-crystal structure with MAGL, structure-based drug discovery (SBDD) approach enabled us to generate various spiro scaffolds like 2a (azetidine-lactam), 2b (cyclobutane-lactam), and 2d (cyclobutane-carbamate) as novel bioisosteres of 3-oxo-3,4-dihydro-2H-benzo[b][1,4]oxazin-6-yl moiety in 1 with higher lipophilic ligand efficiency (LLE). Optimization of the left hand side afforded 4f as a promising reversible MAGL inhibitor, which showed potent in vitro MAGL inhibitory activity (IC50 6.2 nM), good oral absorption, blood-brain barrier penetration, and significant pharmacodynamic changes (2-arachidonoylglycerol increase and arachidonic acid decrease) at 0.3-10 mg/kg, po. in mice.


Drug Design , Enzyme Inhibitors/pharmacology , Monoacylglycerol Lipases/antagonists & inhibitors , Oxazines/pharmacology , Spiro Compounds/pharmacology , Dose-Response Relationship, Drug , Enzyme Inhibitors/chemical synthesis , Enzyme Inhibitors/chemistry , Humans , Models, Molecular , Molecular Structure , Monoacylglycerol Lipases/metabolism , Oxazines/chemistry , Spiro Compounds/chemical synthesis , Spiro Compounds/chemistry , Structure-Activity Relationship
16.
Cell Chem Biol ; 28(12): 1703-1715.e11, 2021 12 16.
Article En | MEDLINE | ID: mdl-34293284

Multi-drug-resistant bacteria present an urgent threat to modern medicine, creating a desperate need for antibiotics with new modes of action. As natural products remain an unsurpassed source for clinically viable antibiotic compounds, we investigate the mechanism of action of armeniaspirol. The armeniaspirols are a structurally unique class of Gram-positive antibiotic discovered from Streptomyces armeniacus for which resistance cannot be readily obtained. We show that armeniaspirol inhibits the ATP-dependent proteases ClpXP and ClpYQ in vitro and in the model Gram-positive Bacillus subtilis. This inhibition dysregulates the divisome and elongasome supported by an upregulation of key proteins FtsZ, DivIVA, and MreB inducing cell division arrest. The inhibition of ClpXP and ClpYQ to dysregulate cell division represents a unique antibiotic mechanism of action and armeniaspirol is the only known natural product inhibitor of the coveted anti-virulence target ClpP. Thus, armeniaspirol possesses a promising lead scaffold for antibiotic development with unique pharmacology.


ATPases Associated with Diverse Cellular Activities/antagonists & inhibitors , Anti-Bacterial Agents/pharmacology , Bacillus subtilis/drug effects , Enzyme Inhibitors/pharmacology , ATPases Associated with Diverse Cellular Activities/metabolism , Anti-Bacterial Agents/chemical synthesis , Anti-Bacterial Agents/chemistry , Bacillus subtilis/enzymology , Cell Division/drug effects , Enzyme Inhibitors/chemical synthesis , Enzyme Inhibitors/chemistry , Microbial Sensitivity Tests , Pyrroles/chemical synthesis , Pyrroles/chemistry , Pyrroles/pharmacology , Spiro Compounds/chemical synthesis , Spiro Compounds/chemistry , Spiro Compounds/pharmacology , Streptomyces/chemistry
17.
Bioorg Med Chem Lett ; 49: 128289, 2021 10 01.
Article En | MEDLINE | ID: mdl-34311084

Leishmaniasis is an infectious disease with several limitations regarding treatment schemes. This work reports the anti-Leishmania activity of spiroacridine compounds against the promastigote (IC50 = 1.1 to 6.0 µg / mL) and amastigote forms of the best compounds (EC50 = 4.9 and 0.9 µg / mL) inLeishmania (L.) infantumand proposes an in-silico study with possible selective therapeutic targets for L. infantum. The substituted dimethyl-amine compound (AMTAC 11) showed the best leishmanicidal activity in vitro, and was found to interact with TryRandLdTopoI. comparisons with standard inhibitors were performed, and its main interactions were elucidated. Based on the biological assessment and the structure-activity relationship study, the spiroacridine compounds appear to be promisinganti-leishmaniachemotherapeutic agents to be explored.


Acridines/pharmacology , Spiro Compounds/pharmacology , Trypanocidal Agents/pharmacology , Acridines/chemical synthesis , Acridines/metabolism , Acridines/toxicity , DNA Topoisomerases, Type I/metabolism , Erythrocytes/drug effects , Leishmania infantum/drug effects , Ligands , Molecular Docking Simulation , Molecular Structure , NADH, NADPH Oxidoreductases/metabolism , Parasitic Sensitivity Tests , Protein Binding , Protozoan Proteins/metabolism , Spiro Compounds/chemical synthesis , Spiro Compounds/metabolism , Spiro Compounds/toxicity , Structure-Activity Relationship , Trypanocidal Agents/chemical synthesis , Trypanocidal Agents/metabolism , Trypanocidal Agents/toxicity
18.
Angew Chem Int Ed Engl ; 60(34): 18514-18518, 2021 08 16.
Article En | MEDLINE | ID: mdl-34138512

Spiroxins A, C, and D are metabolites that have been identified in the marine fungal strain LL-37H248. Their unique polycyclic structures and intriguing biological activities make them attractive targets for the synthetic community. Based on a scalable enantioselective epoxidation of 5-substituted naphthoquinone, an oxidation/spiroketalization cascade, ortho-selective chlorination of the phenol unit, and oxime-ester-directed acetoxylation, an enantioselective total synthesis of (-)-spiroxins A and C and the first total synthesis of (-)-spiroxin D have been achieved.


Naphthalenes/chemical synthesis , Spiro Compounds/chemical synthesis , Molecular Structure , Naphthalenes/chemistry , Spiro Compounds/chemistry , Stereoisomerism
19.
Ultrason Sonochem ; 75: 105614, 2021 Jul.
Article En | MEDLINE | ID: mdl-34111724

A novel supported molybdenum complex on cross-linked poly (1-Aminopropyl-3-vinylimidazolium bromide) entrapped cobalt oxide nanoparticles has been successfully fabricated through two different procedures, i.e. ultrasound (US) irradiations (100 W, 40 kHz) and reflux. The efficiency of the two different methods was comparatively investigated on the fundamental properties of proposed catalyst using diverse characterization techniques. Based on the obtained results, the ultrasonication method provides controlled polymerization process; as a result, well connected polymeric network is formed. In addition, the use of ultrasound waves turned out to be able to increase the particles uniformity, specific surface area (from 79.19 to 223.83 m2/g), and the onset thermal degradation temperature (Td) value (from 248 to 400 °C) of the prepared catalyst which intensifies the catalytic efficiency. Besides, US-treated catalyst demonstrated high chemical stability and maintained its cross-linked network after eight cycles recovery, while the cross-linked network of catalyst obtained under silent condition was completely disrupted. Furthermore, the ultrafast multi-step fabrication procedure was performed in less than 6 h under ultrasonic condition while a similar process promoted by a mechanical stirring method came to a conclusion after 5-6 days. Accordingly, the utility of the ultrasound irradiation was proved, and US-treated catalyst was applied for improved synthetic methodology of spiro 1,4-dihydropyridines and spiro pyranopyrazoles through different acidic active sites. Due to the significant synergistic influence between the proposed catalyst and US irradiation, a variety of novel and recognized mono-spiro compounds were fabricated at room temperature in high regioselectivity.


Coordination Complexes/chemistry , Engineering , Ionic Liquids/chemistry , Molybdenum/chemistry , Spiro Compounds/chemistry , Spiro Compounds/chemical synthesis , Ultrasonic Waves , Chemistry Techniques, Synthetic , Hydrogen-Ion Concentration , Pyrazoles/chemistry , Stereoisomerism , Temperature
20.
Eur J Med Chem ; 223: 113631, 2021 Nov 05.
Article En | MEDLINE | ID: mdl-34147748

A series of exiguamine A analogues were designed and synthesized via 15 steps. Their inhibitory activities against IDO1 were tested and the structure-activity relationships were studied. Most compounds exhibited potent IDO1 inhibitory activities with IC50 values at the level of 10-7-10-8 M. Compound 21f was the most potent IDO1 inhibitor with an IC50 value of 65.3 nM, which was comparable with the positive control drug epacadostat (IC50 = 46 nM). Moreover, compound 21f showed higher selectivity for IDO1 over tryptophan 2,3-dioxygenase (TDO) and no cytotoxicity at its effective concentration, rending it justifiable for further optimization and evaluation.


Enzyme Inhibitors/pharmacology , Indoleamine-Pyrrole 2,3,-Dioxygenase/antagonists & inhibitors , Indoles/pharmacology , Spiro Compounds/pharmacology , Cell Line, Tumor , Cell Survival/drug effects , Drug Design , Enzyme Inhibitors/chemical synthesis , Enzyme Inhibitors/metabolism , Enzyme Inhibitors/toxicity , Humans , Indoleamine-Pyrrole 2,3,-Dioxygenase/metabolism , Indoles/chemical synthesis , Indoles/metabolism , Indoles/toxicity , Molecular Docking Simulation , Molecular Structure , Protein Binding , Spiro Compounds/chemical synthesis , Spiro Compounds/metabolism , Spiro Compounds/toxicity , Structure-Activity Relationship
...